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Survival in equilibrium step fluctuations
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We report the results of analytic and numerical investigations of the time scale of survival or non-zero-
crossing probabilityS(t) in equilibrium step fluctuations described by Langevin equations appropriate for
attachment/detachment and edge-diffusion limited kinetics. An exact relation between long-time behaviors of
the survival probability and the autocorrelation function is established and numerically verified.S(t) is shown
to exhibit a simple scaling behavior as a function of system size and sampling time. Our theoretical results are
in agreement with those obtained from an analysis of experimental dynamical scanning tunneling microscopy
data on step fluctuations on Al/Si~111! and Ag~111! surfaces.
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There has been much recent theoretical@1,2# and experi-
mental@2,3# interest in the persistence behavior of fluctu
ing steps on a vicinal surface. A persistence probabilityP(t),
defined as the probability that the position~‘‘height’’ ! of the
step edge at a point along a fluctuating stepdoes not return
to its initial value~at time t50) over timet is found@1–3# in
these studies to decay in time as a power law,P(t)}t2u, for
larget, whereu is the so-calledpersistence exponent. A simi-
lar power-law behavior of the persistence probability h
also been found in experiments@4# for other physical pro-
cesses. It turns out that the precise definition ofP(t) is ab-
solutely crucial for the power-law behavior discussed in
recent surface fluctuations literature. If, instead of consid
ing the probability of not returning to the initial position, on
defines asurvival probability, S(t), as the probability of the
dynamical step height~at a fixed but arbitrary spatial loca
tion! not returning in timet to its average~‘‘equilibrium’’ !
level, then, quite surprisingly, it was found in a recent e
perimental study@2# of thermal fluctuations of surface step
that S(t) actually manifests itself, in sharp contrast to t
power-law behavior ofP(t), as an exponential decay,S(t)
}exp(2t/ts), at long times, wherets is the survival time
scale. This exponential behavior ofS(t) has remained theo
retically unexplained.

In this paper we provide a definitive theoretical explan
tion for this exponential temporal behavior of the surfa
fluctuation survival probability using rigorous~analytical! ar-
guments and direct~numerical! simulations. Survival and
persistence turn out to beidentical in problems related to the
Ising spin dynamics, where one is interested in the proba
ity that a spin has not changed its sign~has not ‘‘flipped’’! up
to time t @5#. This is due to thediscretenature of Ising spin
dynamics, where a spin flip ensures a change of sign w
respect to both the initial and average~or any other refer-
ence! values of the stochastic variable. In contrast, thecon-
tinuous nature of surface fluctuation dynamics, where t
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step height is a continuous variable, leads to a fundame
qualitative difference betweenP(t) and S(t). This qualita-
tive difference was noted as an experimental fact and
unsolved puzzle in Ref.@2# for equilibrium step fluctuations
on Al/Si~111! @6#. We emphasize that the probabilitiesP(t)
and S(t) provide completely different physical informatio
about surface step fluctuations: while persistence chara
izes the universality class of the dynamical process thro
the persistence exponentu, survival, as discussed in this pa
per, provides useful information about the physical mec
nisms ~and their characteristic time scales! underlying step
fluctuations in the long-time limit.

Another time scale that invariably enters experimen
and numerical measurements of any statistical quantity isthe
sampling timedt ~the interval between successive measu
ments of the step position!. An understanding of the effect
@7# of a finite dt on the measured survival probabilities
necessary for comparing experimental and numerical res
with theoretical predictions.

In this paper, we present the results of a detailed stud
the behavior ofS(t) for two linear Langevin equations tha
describe@8,9# step fluctuations under attachment/detachm
~‘‘high-temperature’’! and edge-diffusion~‘‘low tempera-
ture’’! limited kinetics. We first show analytically that if th
equilibrium autocorrelation functionC(t) of height fluctua-
tions decays exponentially at long times, thenS(t) must also
decay exponentially with a time scale that is proportional
the correlation time@the time scale of the decay ofC(t)].
This prediction is verified from numerical simulations of th
Langevin equations. The simulation results also provide
formation about the dependence of the measured surv
probability on the sampling timedt. We show that the sur-
vival probability S(t,L,dt) exhibits a simple scaling behav
ior in both models. Finally, we use available experimen
data @2,3,10# to calculateC(t) and S(t) for two physical
systems that are believed to be described by these
Langevin equations and show that the experimental res
are consistent with our predictions.

High-temperature step fluctuations, dominated by atom
tic attachment and detachment at the step edge, are kn

of
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@8,9# to be well described by the second-order nonconser
linear Langevin equation

]h~x,t !

]t
5

Gab̃

kBT

]2h~x,t !

]x2
1h~x,t !. ~1!

Here,h(x,t) is the dynamical height fluctuation~position of
the step edge measured from its equilibrium value! at lateral
point x along the step and timet, Ga is the ‘‘step mobility,’’ b̃
is the step-edge stiffness, andh(x,t) is a nonconserved
Gaussian noise satisfying ^h(x,t)h(x8,t8)&52Gad(x
2x8)d(t2t8). Low-temperature step fluctuations dominat
by the step edge diffusion mechanism are, on the other h
described by the fourth order conserved Langevin equat

]h~x,t !

]t
52

Ghb̃

kBT

]4h~x,t !

]x4
1hc~x,t !, ~2!

with ^hc(x,t)hc(x8,t8)&522Gh¹x
2d(x2x8)d(t2t8).

Space- and time-dependent correlation functions of he
fluctuations in these twolinear equations may be calculate
@8,9# easily by Fourier transforms. We assume that hei
fluctuations are measured from the spatial average ofh(x,t),
so that thek50 Fourier component ofh(x,t) is zero at all
times. The autocorrelation function ofh̃(k,t), the Fourier
transform ofh(x,t), has the following form in the long-time
equilibrium state:

^h̃~k,t1!h̃~2k,t2!&5
kBT

b̃k2
exp~2Gb̃kzut12t2u/kBT!,

~3!

wherez52, G5Ga for Eq. ~1!, andz54, G5Gh for Eq. ~2!.
The autocorrelation function of height fluctuations at equil
rium is then given by

C~ t !5^h~x,t1!h~x,t2!&

5
2kBT

b̃
E

kmin

` dk

2p

exp~2Gb̃kzutu/kBT!

k2
~4!

wheret5t12t2 andkmin52p/L for a finite system of linear
dimensionL. This implies thatC(t) exhibits an exponentia
decay at long times,C(t)}exp(2t/tc), where the correlation
time tc is equal tokBTLz/(2p)zGb̃.

There are other physical mechanisms that may lead to
exponential decay ofC(t) at long times. The fluctuations o
a particular step are affected by its interaction with neighb
ing steps. These interaction effects, which are negligible
relatively short time scales if the spacing between neighb
ing steps is large, may become important at long times
one assumes that the step fluctuates in a harmonic confi
potential@8#, (l/2)*h2(x)dx, then one obtains an additiona
term, 2lGah(x,t)/kBT, in the right-hand of Eq.~1!, and
lGh¹x

2h(x,t)/kBT in Eq. ~2!. The function C(t) is then
given by
02210
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C~ t !52kBTE
kmin

` dk

2p

exp@2G~b̃kz1lkz22!utu/kBT!]

b̃k21l
.

~5!

This, again, leads to an exponential decay ofC(t) at long
times, with the correlation timetc a function ofl andL.

There exists a rigorous theorem@11# that states that if the
autocorrelation functionC(t) of a stationary Gaussian pro
cess decays exponentially in time, then its survival proba
ity S(t) must also decay exponentially for larget, S(t)
}exp(2t/ts), with the survival time scalets proportional to
the correlation timetc . The constant of proportionality,c
[ts /tc , which must be less than unity and independent
the system sizeL, is usually nontrivial, being determined b
the full functional form ofC(t). Since the height fluctuation
in our models represent a stationary Gaussian proces
equilibrium, this rigorous result applies for the survival pro
ability of these fluctuations. Thus, we arrive at a very ge
eral, exact result that the survival probability of equilibriu
step fluctuations should decay exponentially at long time
the autocorrelation function does so. This is the first imp
tant result of this paper. Further, measurements of the ratc
of the two time scales may provide valuable informati
about the nature of the processes involved in the step fl
tuations.

We have investigated these aspects in a detailed nume
study in which a simple Euler scheme@1# is used to numeri-
cally integrate spatially discretized versions of Eqs.~1! and
~2!. All the results reported here were obtained in the eq
librium regime.S(t) is measured as the probability that th
height fluctuationhi at a particular sitei does not cross the
average step height~which is conveniently chosen as th
‘‘zero’’ of the height stochastic variable! over time t, aver-
aged over all sites and many (;1042106) independent runs
C(t) is calculated exactly using discretized versions of E
~4! and ~5!.

Typical results forC(t) andS(t) are shown in Figs. 1~a!–
1~c! for Eq. ~1! and in Figs. 2~a!–2~c! for Eq. ~2! @l50 in
both cases#. As indicated in the figures, we used several d
ferent values of the sampling timedt in the measurement o
S(t) @C(t) is, of course, independent ofdt]. It is clear from
the plots that bothC(t) andS(t) decay exponentially at long
times. The time scalestc andts are extracted from exponen
tial fits shown in the semilog plots as dashed straight lin
The dependence oftc on L is given exactly bytc(L)
5(L/2p)z. The results for different values ofL shown in
Figs. 1 and 2 indicate thatts also increases rapidly asL is
increased. However, we find that the calculated values ots
extracted from theS(t) data obtained for differentL using
the same sampling timedt exhibit small but clear deviations
from the expected proportionality toLz. These small devia-
tions result from a weak dependence ofS(t) on the sampling
time dt. As shown in Figs. 1~c! and 2~b!, the rate of the
exponential decay ofS(t) at larget depends weakly on the
value ofdt used in the measurement ofS. This is in accor-
dance with the analytic predictions of Ref.@7#. Since the
only time scale in the problem istc ~as mentioned above,ts
should be proportional totc), the dependence ofS(t) on the
1-2
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sampling timedt should involve the scaling combinatio
dt/tc . Sincetc(L)}Lz in our models, this argument sug
gests that the sampling time should be chosen to be pro
tional toLz if the survival probabilities for different values o
L are to be tested for scaling. Indeed, as shown in Fig. 1~d!,
the values ofS(t) obtained forL5100, 200 and 400 using
dt50.625, 2.5, and 10.0, respectively~so thatdt}Lz with
z52) all fall on the same scaling curve when plotted
functions oft/Lz with z52. As shown in Fig. 2~d!, a similar
scaling collapse is obtained for Eq.~2!. Here, the sampling

FIG. 1. S(t) andC(t) for the Langevin equation of Eq.~1!. The
dashed lines are fits of the long-time data to an exponential form
panels~a!–~c!, the uppermost plots show the data forC(t). Panel
~a!: L5100, dt50.625. Panel~b!: L5200, dt52.5. Panel~c!: L
5400, dt510.0 ~upper plot! and dt51.0 ~lower plot!. Panel~d!:
Finite-size scaling ofS(t,L,dt). Results forS for three different
sample sizes with the same value ofdt/Lz(z52) are plotted vs
t/Lz.

FIG. 2. S(t) andC(t) for the Langevin equation of Eq.~2!. In
panels~a!–~c!, the uppermost plots show the results forC(t). The
dashed lines are fits of the long-time data to an exponential fo
Panel~a!: L520, dt51. Panel~b!: L540, dt516 ~upper plot! and
L540, dt51 ~lower plot!. Panel~c!: L580, dt5256. Panel~d!:
Finite-size scaling ofS(t,L,dt). Results forS for three different
sample sizes with the same value ofdt/Lz(z54) are plotted vs
t/Lz.
02210
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times for differentL are chosen to be proportional toL4, and
the best scaling collapse is obtained when the data for dif
ent L are plotted againstt/Lz with z.3.95. These results
establish that thefull function S(t,L,dt) ~not just the
asymptotic long-time part! has the scaling form

S~ t,L,dt !5 f ~ t/Lz,dt/Lz!, ~6!

where the functionf (x,y) decays exponentially for large va
ues ofx and the rate of this decay increases slowly asy is
decreased. This finite-size scaling behavior ofS, which rep-
resents the second important result of our study, is simila
that found@12# for the persistence probability in a coarseni
system. However, the dependence on the sampling ti
essentialin our scaling considerations, was not analyzed
Ref. @12#.

We have also studied the behavior ofC(t) and S(t) for
Eq. ~1! when the value oftc is primarily determined by the
presence of a nonzerol associated with step-step interactio
@cf. Eq. ~5! above#. By varying l anddt for a system with
L5400, we find thatS(t,l,dt) exhibits excellent scaling
behavior as a function oft/tc if the quantitydt/tc is held
constant. Therefore, we conclude thatS is a function of the
scaling variablest/tc anddt/tc , irrespective of the origin of
the finite value of the correlation timetc .

For l50, the ratioc5ts /tc for Eq. ~1! decreases from
about 0.57 to about 0.41 as the ratiodt/tc is decreased from
0.025 to 2.531024, indicating thatc.0.4 in the dt→0
limit. For relatively largeL and nonzerol wheretc is de-
termined primarily by the value ofl, we find thatc.0.47
for dt/tc50.025. The difference between the values ofc for
the same value ofdt/tc in the two cases reflects the expect
dependence ofc on the details ofC(t). For Eq.~2! with l
50, the value ofc decreases from about 0.44 to about 0.
asdt/tc is decreased from 0.01 to 631024. The qualitative
behavior ofc as a function ofdt/tc is similar in all the cases
we have considered, and is consistent with the general
dictions of Ref.@7#.

We have also used dynamical scanning tunneling micr
copy data to calculateC(t) and S(t) for two experimental
systems: Al/Si~111! at relatively high temperatures, which
believed @2,13,14# to provide a physical realization of Eq
~1!, and Ag~111! at relatively low temperatures where th
step fluctuations are expected@3,10# to be governed by the
conserved equation~2!. Some of the results of this analys
are shown in Fig. 3. For Al/Si~111! at 970 K we find expo-
nential decay of bothC(t) andS(t). The value of the ratioc

In

.

FIG. 3. S(t) andC(t) for two experimental systems. The dash
lines are fits of the long-time data to an exponential form. Panel~a!:
Al/Si~111! at T5970 K. Panel~b!: Ag~111! at T5450 K.
1-3
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obtained from the estimates oftc andts is close to 0.5. This
value is right in the middle of the range of values ofc ob-
tained from our numerical study of Eq.~1!. Ag~111! at 450-K
data is characterized byc.0.34, which is again in the rang
of values obtained in the numerical study of Eq.~2!. We,
therefore, conclude that the available experimental data
S(t) andC(t) are consistent with our theoretical results.

Experimental data on the Al/Si~111! system are available
at several temperatures between 770 and 1020 K. As
ported in Ref.@2#, S(t) decays exponentially at long times
all these temperatures, withts decreasing from 3.6 to 0.9 s a
T is increased from 770 to 1020 K. Using these values ots
~actually, the corresponding values oftc obtained from the
relation ts /tc.0.5) together with the values of the param
etersG andb̃ obtained from other measurements@13,14#, we
have calculated an ‘‘effective length’’Le f f that would lead to
the observed finite value oftc if it resulted from a finite
length of the sample. The value ofLe f f is found to decrease
from 4020 to 389 Å asT is decreased from 1020 to 770 K
These values are much smaller than the nominal step len
in the experimental sample. The observedT dependence o
Le f f is inconsistent with the possibility that the finite valu
of tc are due to a nonzero value of the parameterl: the
length scale associated withl should increase@8# as T is
i
d

lit
fa
am
’’

.’’
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decreased. It is possible thatLe f f is a measure of the typica
length of a step edge between adjacent points that are
fixed by some kind of pinning centers. Since pinning b
comes more effective at lowT, this mechanism would pro
vide a qualitative explanation of whyLe f f decreases asT is
reduced. Yet another possibility is thatLe f f is a measure of
the length scale over which step edge fluctuations are ef
tively equilibrated.

To conclude, we have shown analytically and numerica
that the survival probability of equilibrium step fluctuation
on vicinal surfaces decays exponentially at long times, a
have established a relation between the time scales cha
terizing the exponential decay of the survival probability a
the autocorrelation function. Our theory explains the pu
zling experimental finding of an exponential decay ofS(t)
reported in Ref.@2#. We have also shown that the surviv
probability exhibits simple scaling as a function of the sy
tem size and the sampling time, which plays a very import
role in the measurement ofS(t).
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