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Survival in equilibrium step fluctuations

C. Dasguptd* M. Constantint? S. Das Sarméa,and Satya N. Majumdar
!Condensed Matter Theory Center, Department of Physics, University of Maryland, College Park, Maryland 20742-4111, USA
2Materials Research Science and Engineering Center, Department of Physics, University of Maryland, College Park,
Maryland 20742-4111, USA
SLaboratoire de Physique Quantique, UMR C5626, Universite Paul Sabatier, 31062 Toulouse Cedex, France
(Received 3 July 2003; published 12 February 2004

We report the results of analytic and numerical investigations of the time scale of survival or non-zero-
crossing probabilityS(t) in equilibrium step fluctuations described by Langevin equations appropriate for
attachment/detachment and edge-diffusion limited kinetics. An exact relation between long-time behaviors of
the survival probability and the autocorrelation function is established and numerically veffigds shown
to exhibit a simple scaling behavior as a function of system size and sampling time. Our theoretical results are
in agreement with those obtained from an analysis of experimental dynamical scanning tunneling microscopy
data on step fluctuations on Al($l1) and Ag111) surfaces.
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There has been much recent theoretjda?] and experi- step height is a continuous variable, leads to a fundamental
mental[2,3] interest in the persistence behavior of fluctuat-qualitative difference betweeR(t) and S(t). This qualita-
ing steps on a vicinal surface. A persistence probalHift), tive difference was noted as an experimental fact and an
defined as the probability that the positi¢theight”) of the  unsolved puzzle in Ref2] for equilibrium step fluctuations
step edge at a point along a fluctuating stiees not return  on Al/Si(111) [6]. We emphasize that the probabilitiEgt)
to its initial value(at time t=0) over timet is found[1-3] in and S(t) provide completely different physical information
these studies to decay in time as a power )<t~ for  about surface step fluctuations: while persistence character-
larget, whered is the so-calleghersistence exponem simi-  izes the universality class of the dynamical process through
lar power-law behavior of the persistence probability haghe persistence exponeft survival, as discussed in this pa-
also been found in experimenitd] for other physical pro- per, provides useful information about the physical mecha-
cesses. It turns out that the precise definitiorP¢f) is ab-  nisms(and their characteristic time scalasnderlying step
solutely crucial for the power-law behavior discussed in thefluctuations in the long-time limit.
recent surface fluctuations literature. If, instead of consider- Another time scale that invariably enters experimental
ing the probability of not returning to the initial position, one and numerical measurements of any statistical quantityels
defines asurvival probability S(t), as the probability of the sampling timest (the interval between successive measure-
dynamical step heighfat a fixed but arbitrary spatial loca- ments of the step positignAn understanding of the effects
tion) not returning in timet to its averagg“equilibrium”) [7] of a finite 8t on the measured survival probabilities is
level, then, quite surprisingly, it was found in a recent ex-necessary for comparing experimental and numerical results
perimental study?2] of thermal fluctuations of surface steps with theoretical predictions.
that S(t) actually manifests itself, in sharp contrast to the In this paper, we present the results of a detailed study of
power-law behavior oP(t), as an exponential deca$(t) the behavior ofS(t) for two linear Langevin equations that
cexp(—t/7), at long times, whererg is the survival time describe8,9] step fluctuations under attachment/detachment
scale. This exponential behavior 8ft) has remained theo- (“high-temperature’) and edge-diffusion(“low tempera-
retically unexplained. ture”) limited kinetics. We first show analytically that if the
In this paper we provide a definitive theoretical explana-equilibrium autocorrelation functio@(t) of height fluctua-
tion for this exponential temporal behavior of the surfacetions decays exponentially at long times, ti&mh) must also
fluctuation survival probability using rigoroanalytica) ar-  decay exponentially with a time scale that is proportional to
guments and direcinumerical simulations. Survival and the correlation timgthe time scale of the decay @(t)].
persistence turn out to hdenticalin problems related to the This prediction is verified from numerical simulations of the
Ising spin dynamics, where one is interested in the probabiltangevin equations. The simulation results also provide in-
ity that a spin has not changed its sidmas not “flipped”) up ~ formation about the dependence of the measured survival
to timet [5]. This is due to theliscretenature of Ising spin  probability on the sampling timét. We show that the sur-
dynamics, where a spin flip ensures a change of sign witlvival probability S(t,L, 8t) exhibits a simple scaling behav-
respect to both the initial and averag@ any other refer- ior in both models. Finally, we use available experimental
ence values of the stochastic variable. In contrast, ¢tbe-  data[2,3,10 to calculateC(t) and S(t) for two physical
tinuous nature of surface fluctuation dynamics, where thesystems that are believed to be described by these two
Langevin equations and show that the experimental results
are consistent with our predictions.
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[8,9] to be well described by the second-order nonconserved = dk exr[—l“(f%kz+)\kz‘2)|t|/k ]
linear Langevin equation C(t)=2kgT — = ALl
Kmin2 T BkZ+\
() _ LB Phix) | . ®)
ot - kBT (7X2 W(X,t) ( )

This, again, leads to an exponential decayCdgt) at long
times, with the correlation time, a function ofA andL.
Here,h(x,t) is the dynamical height fluctuatioposition of There exists a rigorous theordrtil] that states that if the
the step edge measured from its equilibrium vakielateral  autocorrelation functiorC(t) of a stationary Gaussian pro-
pointx along the step and timelI , is the “step mobility,” 3  cess decays exponentially in time, then its survival probabil-
is the step-edge stiffness, ang(x,t) is a nonconserved ity S(t) must also decay exponentially for larde S(t)
Gaussian noise satisfying{7(x,t) n(x’,t"))=2T 8(x xexp(—t/7), with the survival time scale proportional to
—x")8(t—t"). Low-temperature step fluctuations dominatedthe correlation timer.. The constant of proportionality
by the step edge diffusion mechanism are, on the other hanes 7,/ 7., which must be less than unity and independent of
described by the fourth order conserved Langevin equationthe system sizé, is usually nontrivial, being determined by
the full functional form ofC(t). Since the height fluctuations
ah(x,t) B *h(x,t) in our models represent a stationary Gaussian process at
A KeT o + ne(X,1), (2)  equilibrium, this rigorous result applies for the survival prob-
ability of these fluctuations. Thus, we arrive at a very gen-
) o 5 ) , eral, exact result that the survival probability of equilibrium
with (7¢(X,t) 7¢(X",t")) = — 2", V3 6(x = x") 5(t —t"). ~ step fluctuations should decay exponentially at long times if
Space- and time-dependent correlation functions of heighte autocorrelation function does so. This is the first impor-
fluctuations in these twbnear equations may be calculated tant result of this paper. Further, measurements of the catio
[8,9] easily by Fourier transforms. We assume that heighbf the two time scales may provide valuable information

fluctuations are measured from the spatial averadgxft),  apout the nature of the processes involved in the step fluc-
so that thek=0 Fourier component ofi(x,t) is zero at all  yations.

times. The autocorrelation function di(k,t), the Fourier We have investigated these aspects in a detailed numerical
transform ofh(x,t), has the following form in the long-time study in which a simple Euler scherfif] is used to numeri-
equilibrium state: cally integrate spatially discretized versions of E(s.and

(2). All the results reported here were obtained in the equi-
_ _ kg T _ librium regime.S(t) is measured as the probability that the
(h(k,ty)h(=kt2)) ==—exp(— ' BK*t;—to|/kgT), height fluctuationh; at a particular sité does not cross the
Bk average step heighivhich is conveniently chosen as the
3 “zero” of the height stochastic variableover timet, aver-

wherez=2, T=T, for Eq. (1), andz=4, I =T, for Eq. (2). aged over all sites and many-@0*— 10°) independent runs.

The autocorrelation function of height fluctuations at equilib—(%t;r"‘z E:;Iculated exactly using discretized versions of Egs.

rium is then given by Typical results foiC(t) andS(t) are shown in Figs.(®—

_ 1(c) for Eq. (1) and in Figs. 2a)—2(c) for Eq. (2) [A=0 in
C(H)=(h(xt)h(x.t2)) both casek As indicated in the figures, we used several dif-
2kBTf°° dk exp(— I BKYt|/kgT) ferent values of the sampling tim# in the measurement of

(4) S(t) [C(t) is, of course, independent of]. It is clear from
the plots that botlC(t) andS(t) decay exponentially at long
times. The time scaleg, and 7 are extracted from exponen-

wheret=t; —t, andkp;,=27/L for a finite system of linear tjal fits shown in the semilog plots as dashed straight lines.

dimensionL. This implies thatC(t) exhibits an exponential The dependence of, on L is given exactly byr.(L)
decay at long timesC(t) <exp(~t/z;), where the correlation = (L/27)2. The results for different values df shown in
time 7. is equal tokgTLY (27)2T B. Figs. 1 and 2 indicate that; also increases rapidly dsis
There are other physical mechanisms that may lead to aimcreased. However, we find that the calculated values; of
exponential decay of(t) at long times. The fluctuations of extracted from theS(t) data obtained for different using
a particular step are affected by its interaction with neighborthe same sampling timét exhibit small but clear deviations
ing steps. These interaction effects, which are negligible atrom the expected proportionality 1o*. These small devia-
relatively short time scales if the spacing between neighbortions result from a weak dependenceS¢t) on the sampling
ing steps is large, may become important at long times. Itime §t. As shown in Figs. c) and 2b), the rate of the
one assumes that the step fluctuates in a harmonic confinirgkponential decay of(t) at larget depends weakly on the
potential[8], (\/2)[h?(x)dx, then one obtains an additional value of 5t used in the measurement 8f This is in accor-
term, — A" h(x,t)/kgT, in the right-hand of Eq(l), and dance with the analytic predictions of Réff]. Since the

A\V2h(x,t)/kgT in Eq. (2). The functionC(t) is then only time scale in the problem ig (as mentioned above

given by should be proportional te.), the dependence &t) on the

B 2m k2

Kmin
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FIG. 3. S(t) andC(t) for two experimental systems. The dashed
lines are fits of the long-time data to an exponential form. Pemel
Al/Si(111) at T=970 K. Panelb): Ag(111) at T=450 K.
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C(t) and S(t)

] times for different. are chosen to be proportional it4, and
62060 3000 000 8000 o000 0 00T~ GZ 007 s the best scaling collapse is obtained when the data for differ-
t t/L ent L are plotted against/L? with z=3.95. These results

FIG. 1. S(t) andC(t) for the Langevin equation of Eql). The establlsh. that thefull function E{t'L{&) (not just the

dashed lines are fits of the long-time data to an exponential form. IRSYMptotic long-time partas the scaling form

panels(a)—(c), the uppermost plots show the data fft). Panel _ 7 2

(8): L=100, 6t=0.625. Panelb): L=200, 6t=2.5. Panelc): L S(t,L,6t)=f(t/L?% 6t/L7), (6)

=400, 6t=10.0 (upper ploi and 5t=1.0 (lower ploy. Panel(d):

Finite-size scaling ofS(t,L,ét). Results forS for three different

sample sizes with the same value #8fL*(z=2) are plotted vs

t/L%

0.001F 4 o0

where the functiori(x,y) decays exponentially for large val-
ues ofx and the rate of this decay increases slowlyyads
decreased. This finite-size scaling behavioSpfvhich rep-
resents the second important result of our study, is similar to
sampling time &t should involve the scaling combination that found[12] for the persistence probability in acoa_rseni_ng
system. However, the dependence on the sampling time,

St/ T.. Since 7¢(L)=L? in our models, this argument sug- o . . ; :
S essentialin our scaling considerations, was not analyzed in
gests that the sampling time should be chosen to be Propof ¢ [12]

tional toL? if the survival probabilities for different values of We have also studied the behavior ®ft) and S(t) for

L are to be tested for scaling. Indeed, as shown in Fig), 1 E S .
. = . g. (1) when the value of-. is primarily determined by the
téhte:\(/)aflsuzzs c;fss(t)ar?gtiggd :g;:;cii?/(;@éia;r;fgov\%tsr;ng presence of a nonzeloassociated with step-step interaction
R o : [cf. Eq. (5) abovd. By varying A and &t for a system with
fz—2t)_ all f?tII/LoZn The s_a;niscakt]lmg gur\lé_e when p!ot_tled aSL=4OO, we find thatS(t,\,6t) exhibits excellent scaling
unctions o With z=2. AS Shown In Hg. &), a simi A" behavior as a function dff 7, if the quantity 6t/ 7. is held
scaling collapse is obtained for E). Here, the sampling constant. Therefore, we conclude tfsis a function of the
. scaling variable$/ 7, and 6t/ ., irrespective of the origin of
b) ] the finite value of the correlation time, .
For A =0, the ratioc= 7./ 7, for Eq. (1) decreases from
i about 0.57 to about 0.41 as the radid 7. is decreased from
0.025 to 2.5¢10 4, indicating thatc=0.4 in the st—0
o S(:5t=16 limit. For relatively largeL and nonzerox where 7. is de-
Y S —So:at=1 , termined primarily by the value af, we find thatc=0.47
100200 300400 50001000 2000 3000 4000 for 6t/ 7.=0.025. The difference between the values dbr
. . e 1 . . 3 the same value aft/ 7. in the two cases reflects the expected
dependence of on the details ofC(t). For Eqg.(2) with A
3 =0, the value oft decreases from about 0.44 to about 0.30
as ot/ 7, is decreased from 0.01 tox610™“. The qualitative
-L=40 E behavior ofc as a function ot/ 7. is similar in all the cases
..... L=80 we have considered, and is consistent with the general pre-
T ZO.(I)OI 00015 dictions of Ref[7].
t/L We have also used dynamical scanning tunneling micros-
FIG. 2. S(t) andC(t) for the Langevin equation of E@2). In copy data to CaICUIate(t), and S_(t) for two EXperimemaI,
panels(a)—(c), the uppermost plots show the results @ft). The sygtems. Al/Si11)) at relat'|vely high t'emperat'ure.s, which is
dashed lines are fits of the long-time data to an exponential form(ble;“evegi [:dlfii;] tto plrot\'”d(la EI‘ ph¥S|CaI retal'zat'or;] of Et?]
Panel(a): L=20, st=1. Panelb): L=40, 6t=16 (upper plo} and ; an at relauvely low temperatures wnere the
L=40(, )6t=1 (lower plod. PaIEle)I(c): L =80, 5t=(2§g. Pgnlel(d): step fluctuations are expect€8,10] to be governed by the
Finite-size scaling ofS(t,L,8t). Results forS for three different  conserved equatio(2). Some of the results of this analysis

sample sizes with the same value &fL%(z=4) are plotted vs are shown in Fig. 3. For Al/§111) at 970 K we find expo-
/L% nential decay of botlC(t) andS(t). The value of the ratic
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obtained from the estimates ef and 75 is close to 0.5. This
value is right in the middle of the range of values@bb-
tained from our numerical study of E€l). Ag(111) at 450-K
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decreased. It is possible thiag¢ is a measure of the typical
length of a step edge between adjacent points that are held
fixed by some kind of pinning centers. Since pinning be-

data is characterized fy=0.34, which is again in the range comes more effective at oW, this mechanism would pro-
of values obtained in the numerical study of Eg). We,  vide a qualitative explanation of why,; decreases & is
therefore, conclude that the available experimental data opeduced. Yet another possibility is thiag(; is a measure of

S(t) andC(t) are consistent with our theoretical results.  the |ength scale over which step edge fluctuations are effec-
Experimental data on the Al/@il]) system are available jyely equilibrated.

at several temperatures between 770 and 1020 K. As re- 14 conclude, we have shown analytically and numerically
ported in Ref[2], S(t) decays exponentially at long times at ha¢ the survival probability of equilibrium step fluctuations
all these temperatures, witly decreasing from 3.6 t0 0.9 s as g vicinal surfaces decays exponentially at long times, and
Tis increased from 770 to 1020 K. Using these value$;0f pave established a relation between the time scales charac-

(actually, the corresponding values gf obtained from the

relation 5/ 7.=0.5) together with the values of the param-

etersI" and 3 obtained from other measuremefit8,14], we
have calculated an “effective length’, ;s that would lead to
the observed finite value of; if it resulted from a finite
length of the sample. The value bf;; is found to decrease
from 4020 to 389 A ag is decreased from 1020 to 770 K.

terizing the exponential decay of the survival probability and
the autocorrelation function. Our theory explains the puz-
zling experimental finding of an exponential decaySgf)
reported in Ref[2]. We have also shown that the survival
probability exhibits simple scaling as a function of the sys-
tem size and the sampling time, which plays a very important
role in the measurement &t).
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